Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose

Por um escritor misterioso
Last updated 01 junho 2024
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
IJMS, Free Full-Text
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Biotechnology & Bioengineering, Biotechnology Journal
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
IJMS, Free Full-Text
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity, Biotechnology for Biofuels and Bioproducts
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Frontiers Recent Advances in Screening Methods for the Functional Investigation of Lytic Polysaccharide Monooxygenases
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity, Biotechnology for Biofuels and Bioproducts
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Following the fate of lytic polysaccharide monooxygenases (LPMOs) under oxidative conditions by NMR spectroscopy
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Oxidative modification of cellulosic fibres by lytic polysaccharide monooxygenase AA9A from Trichoderma reesei

© 2014-2024 rahh.de. All rights reserved.